
临床研究SAS高级编程 1

临床研究SAS高级编程

－－ SAS Dataset Creation

临床研究SAS高级编程 2

Contents

SAS data step

Access to PC files

Access to Oracle

Access to SQL

临床研究SAS高级编程 3

SAS Data Step

Contents

Creating SAS data sets from raw data

Creating and managing variables

临床研究SAS高级编程 4

Creating SAS Data Sets from Raw Data

Contents

Overview

Raw data files

Steps to create a SAS data set

Referencing a SAS library

Referencing a raw data file

Writing a DATA step program

Submitting the DATA step program

Creating and modifying variables

Subsetting data

Reading instream data

Steps to create a raw data file

临床研究SAS高级编程 5

Overview

Introduction

In order to create reports with SAS procedures, your data must be in the

form of a SAS data set. If your data is not stored in the form of a SAS data set,

then you need to create a SAS data set by entering data, by reading raw data,

or by accessing external files (files that were created by other software)

This shows you how to design and write a DATA step program to create a

SAS data set from raw data that is stored in an external file. It also shows you

how to read data from a SAS data set and write observations out to a raw data

file.

临床研究SAS高级编程 6

Raw Data Files

A raw data file is an external text file whose records

contain data values that are organized in fields. Raw data

files are non-proprietary and can be read by a variety of

software programs.

临床研究SAS高级编程 7

Steps to Create a SAS Data Set

To read the raw data file, the DATA step must provide the following

instructions to SAS:

 the location or name of the external text file

 a name for the new SAS data set

 a reference that identifies the external file

 a description of the data values to be read.

To do this... Use this SAS statement...

Reference SAS data library LIBNAME statement

Reference external file FILENAME statement

Name SAS data set DATA statement

Identify external file INFILE statement

Describe data INPUT statement

Execute DATA step RUN statement

List the data PROC PRINT statement

Execute final program step RUN statement

临床研究SAS高级编程 8

Referencing a SAS Library

Using a LIBNAME statement

As you begin to write the program, remember that you use a LIBNAME

statement to reference the permanent SAS library in which the data set will be

stored.

For example, the LIBNAME statement below assigns the libref Taxes to

the SAS library C:\Users\Acct\Qtr1\Report in the Windows environment.

libname taxes 'c:\users\acct\qtr1\report';

To do this... Use this SAS statement... Example

Reference a SAS library LIBNAME statement libname libref 'SAS-data- library';

临床研究SAS高级编程 9

Referencing a Raw Data File (1)

Using a FILENAME statement (1)

Before you can read your raw data, you must point to the location of the

external file that contains the data. You use the FILENAME statement to point

to this location.

Filerefs perform the same function as librefs: they temporarily point to a

storage location for data. However, librefs reference SAS data libraries,

whereas filerefs reference external files.

To do this... Use this SAS statement... Example

Reference an external file FILENAME statement filename tests 'c:\users\tmill.dat';

临床研究SAS高级编程 10

Referencing a Raw Data File (2)

Using a FILENAME statement (2)

General form, FILENAME statement:

FILENAME fileref 'filename';

where

fileref is a name that you associate with an external file. The name

must be I to 8 characters long, begin with a letter or underscore, and

contain only letters, numbers, or underscores.

 filename is the fully qualified name or location of the file.

临床研究SAS高级编程 11

Referencing a Raw Data File (3)

Defining a fully qualified filename

The following FILENAME statement temporarily associates the

fileref Tests with the external file that contains the data from the

exercise stress tests. The complete filename is specified as

C:\Users\Tmill.dat in the Windows environment.

filename tests 'c:\users\tmill.dat';

临床研究SAS高级编程 12

Referencing a Raw Data File (4)

Defining an aggregate storage location
You can also use a FILENAME statement to associate a fileref

with an aggregate storage location, such as a directory that contains
multiple external files.

This FILENAME statement temporarily associates the fileref
Finance with the aggregate storage directory
C:\Users\Personal\Finances:

filename finance 'c:\users\personal\finances';

Note: Both the LIBNAME and FILENAME statements are global. In
other words, they remain in effect until you change them, cancel them,
or end your SAS session.

临床研究SAS高级编程 13

Referencing a Raw Data File (5)

Referencing a fully qualified filename

When you associate a fileref with an individual external file, you

specify the fileref in subsequent SAS statements and commands.

临床研究SAS高级编程 14

Referencing a Raw Data File (6)

Referencing a file in an aggregate storage location

To reference an external file with a fileref that points to an

aggregate storage location, you specify the fileref followed by the

individual filename in parentheses:

Note: In the Windows operating environment, you can omit the

filename extension but you will need to add quotation marks when

referencing the external file, as in

infile tax(‘refund’);

临床研究SAS高级编程 15

Writing a DATA Step Program (1)

Naming the data set

The DATA statement indicates the beginning of the DATA step and names

the SAS data set to be created.

General form, basic DATA statement:

DATA SAS-data-set-1 <...SAS-data-set-n>;

where SAS-data-set is the name (libref.filename) of the data set to be created.

Remember that the SAS data set name is a two-level name. For example,

the two-level name Clinic.Admit specifies that the data set Admit is stored in

the permanent SAS library to which the libref Clinic has been assigned.

To do this... Use this SAS statement... Example

Name a SAS data set
DATA statement data

Sasuser.Stress;

临床研究SAS高级编程 16

Writing a DATA Step Program (2)

Specifying the raw data file (1)

When reading raw data, use the INFILE statement to indicate which file the

data is in.

General form, INFILE statement:

INFILE file-specification <options>;

 where

 file-specification can take the form fileref to name a previously defined file

reference or ’filename’ to point to the actual name and location of the file

 options describes the input file’s characteristics and specifies how it is to be read

with the INFILE statement.

To do this... Use this SAS statement... Example

Identify an external file INFILE statement infile tests obs=10;

临床研究SAS高级编程 17

Writing a DATA Step Program (3)

Specifying the raw data file (2)

To read the raw data file to which the fileref Tests has been

assigned, you write the following INFILE statement:
infile tests;

Note: Instead of using a FILENAME statement, you can choose to

identify the raw data file by specifying the entire filename and location

in the INFILE statement.

For example, the following statement points directly to the

C:\Irs\Personal\Refund.dat file:

infile 'c:\irs\personal\refund.dat';

临床研究SAS高级编程 18

Writing a DATA Step Program (4)

Quiz
 Which statement identifies the name of a raw data file to be read

with the fileref Products and specifies that the DATA step read only
records 1–15?

a. infile products obs 15;

b. infile products obs=15;

c. input products obs=15;

d. input products 1-15;

Correct answer: b

You use an INFILE statement to specify the raw data file to be read.
You can specify a fileref or an actual filename (in quotation marks). The
OBS= option in the INFILE statement enables you to process only
records 1 through n.

临床研究SAS高级编程 19

Writing a DATA Step Program (5)

Column input

In this section, you’ll be working with column input, the most

common input style. Column input specifies actual column locations

for values. However, column input is appropriate only in certain

situations. When you use column input, your data must be

 standard character or numeric values

 in fixed fields.

临床研究SAS高级编程 20

Writing a DATA Step Program (6)

Standard and nonstandard numeric data (1)

Standard numeric data values can contain only

 numbers

 decimal points

 numbers in scientific or E-notation (2.3E4, for example)

 plus or minus signs.

Nonstandard numeric data includes

 values that contain special characters, such as percent signs (%), dollar

signs ($), and commas (,)

 date and time values

 data in fraction, integer binary, real binary, and hexadecimal forms.

The external file that is referenced by the fileref Staff. The fields

contain values for each employee’s last name, first name, job title, and

annual salary.

临床研究SAS高级编程 21

Writing a DATA Step Program (7)

Standard and nonstandard numeric data (2)

Notice that the values for Salary contain commas. The values for

Salary are considered to be nonstandard numeric values. You

cannot use column input to read these values.

临床研究SAS高级编程 22

Writing a DATA Step Program (8)

Fixed-field data

Raw data can be organized in several

different ways.

This external file contains data that is free-

format, meaning data that is not arranged in

columns. Notice that the values for a particular

field do not begin and end in the same columns.

You cannot use column input to read this file.

This external file contains data that is

arranged in columns or fixed fields. You can

specify a beginning and ending column for

each field. Let's look at how column input can

be used to read this data.

临床研究SAS高级编程 23

Writing a DATA Step Program (9)

Describing the data (1)

The INPUT statement describes the fields of raw data to be read and
placed into the SAS data set.

General form, INPUT statement using column input:

INPUT variable ;<$> startcol-endcol . . .

 where

variable is the SAS name that you assign to the field

the dollar sign ($) identifies the variable type as character (if the variable is
numeric, then nothing appears here)

startcol represents the starting column for this variable

endcol represents the ending column for this variable.

To do this... Use this SAS statement... Example

Describe data INPUT statement input ID 1-4 Name $ 6-25 ...;

Execute the DATA step RUN statement run;

临床研究SAS高级编程 24

Writing a DATA Step Program (10)

Describing the data (2)

Look at the small data file shown below. For each field of raw data

that you want to read into your SAS data set, you must specify the

following information in the INPUT statement:

a valid SAS variable name

a type (character or numeric)

a range (starting column and ending column).

临床研究SAS高级编程 25

Writing a DATA Step Program (11)

Describing the data (3)

The INPUT statement below assigns the character variable ID to

the data in columns 1-4, the numeric variable Age to the data in

columns 6-7, the character variable ActLevel to the data in columns

9-12, and the character variable Sex to the data in column 14.

filename exer 'c:\users\exer.dat';

data exercise;

 infile exer;

 input ID $ 1-4 Age 6-7 ActLevel $ 9-12 Sex $ 14;

run;

临床研究SAS高级编程 26

Writing a DATA Step Program (12)

Describing the data (4)

When you use column input, you can

 read any or all fields from the raw data file

 read the fields in any order

 specify only the starting column for values that occupy only one column.

input ActLevel $ 9-12 Sex $ 14 Age 6-7;

临床研究SAS高级编程 27

Writing a DATA Step Program (13)

Specifying variable names (1)

Each variable has a name that conforms to SAS naming

conventions. Variable names

must be 1 to 32 characters in length

must begin with a letter (A-Z) or an underscore (_)

can continue with any combination of numbers, letters, or underscores.

Let’s look at an INPUT statement that uses column input to read

the three data fields in the raw data file below.

临床研究SAS高级编程 28

Writing a DATA Step Program (14)

Specifying variable names (2)

The values for the variable that you are naming Age are located in

columns I-2. Because Age is a numeric variable, you do not specify a

dollar sign ($) after the variable name.

 input Age 1–2

The values for the variable ActLevel are located in columns 3-6.

You specify a $ to indicate that ActLevel is a character variable.

 input Age 1-2 ActLevel $ 3–6

The values for the character variable Sex are located in column 7.

Notice that you specify only a single column.

 input Age 1–2 ActLevel $ 3–6 Sex $ 7;

临床研究SAS高级编程 29

Submitting the DATA Step Program (1)

Verifying the data (1)

To verify your data, it is a good idea to use the OBS= option in the
INFILE statement. Adding OBS=n to the INFILE statement enables you to
process only records 1 through n, so you can verify that the correct fields are
being read before reading the entire data file.

The program below reads the first ten records in the raw data file
referenced by the fileref Tests. The data is stored in a permanent SAS data
set, named Sasuser.Stress. Don't forget a RUN statement, which tells SAS
to execute the previous SAS statements.

 data Sasuser.stress;

 infile tests obs=10;

 input ID 1-4 Name $ 6-25 RestHR 27-29

 MaxHR 31-33 RecHR 35-37 TimeMin 39-40

 TimeSec 42-43 Tolerance $ 45;

 run;

临床研究SAS高级编程 30

Submitting the DATA Step Program (2)

Verifying the data (2)

临床研究SAS高级编程 31

Submitting the DATA Step Program (3)

Checking DATA step processing

After submitting the previous program, messages in the log verify

that the raw data file was read correctly. The notes in the log indicate

that

 10 records were read from the raw data file

 the SAS data set Sasuser.Stress was created with 10 observations

and 8 variables.

临床研究SAS高级编程 32

Submitting the DATA Step Program (4)

Listing the data set

The messages in the log seem to indicate that the DATA step program

correctly accessed the raw data file. But it is a good idea to look at the ten

observations in the new data set before reading the entire raw data file. You

can submit a PROC PRINT step to view the data.

The following PROC PRINT step lists the Sasuser.Stress data set.

 proc print data=Sasuser.Stress;

 run;

The PROC PRINT output indicates that the variables in the Sasuser.Stress data

set were read correctly for the first 10 records.

To do this... Use this SAS statement... Example

List the data
PROC PRINT statement proc print

data=Sasuser.Stress;

Execute the final program step RUN statement run;

临床研究SAS高级编程 33

Submitting the DATA Step Program (5)

Reading the entire raw data file

Now that you’ve checked the log and verified your data, you can

modify the DATA step to read the entire raw data file. To do so,

remove the OBS= option from the INFILE statement and re- submit

the program.

data Sasuser.Stress;

 infile tests;

 input ID 1-4 Name $ 6-25 RestHR 27-29

 MaxHR 31-33 RecHR 35-37 TimeMin 39-40

 TimeSec 42-43 Tolerance $ 45;

run;

临床研究SAS高级编程 34

Submitting the DATA Step Program (6)

Invalid data (1)

When you submit the revised DATA step and check the log, you

see a note indicating that invalid data appears for the variable

RecHR in line 14 of the raw data file, columns 35-37.

This note is followed by a column ruler and the actual data line

that contains the invalid value for RecHR.

临床研究SAS高级编程 35

Submitting the DATA Step Program (7)

Invalid data (2)
The value Q13 is a data-entry error. It was entered incorrectly for

the variable RecHR.

RecHR is a numeric variable, but Q13 is not a valid number. So
RecHR is assigned a missing value, as indicated in the log. Because
RecHR is numeric, the missing value is represented with a period.

Notice, though, that the DATA step does not fail as a result of the
invalid data but continues to execute. Unlike syntax errors, invalid
data errors do not cause SAS to stop processing a program.

Assuming that you have a way to edit the file and can justify a
correction, you can correct the invalid value and rerun the DATA step.
If you did this, the log would then show that the data set
Sasuser.Stress was created with 21 observations, 8 variables, and
no messages about invalid data.

临床研究SAS高级编程 36

Submitting the DATA Step Program (8)

Invalid data (3)

After correcting the raw data file, you can list the data again to

verify that it is correct.

 proc print data=Sasuser.Stress;

 run;

临床研究SAS高级编程 37

Submitting the DATA Step Program (9)

Invalid data (4)

Whenever you use the DATA step to read raw data, remember the

steps that you followed in this chapter, which help ensure that you

don’t waste resources when accessing data:

 Write the DATA step using the OBS= option in the INFILE statement.

 Submit the DATA step.

 Check the log for messages.

 View the resulting data set.

 Remove the OBS= option and re-submit the DATA step.

 Check the log again.

 View the resulting data set again.

临床研究SAS高级编程 38

Submitting the DATA Step Program (10)

Quiz

Which statement correctly reads the fields in the following order:

StockNumber, Price, Item, Finish, Style?

a. input StockNumber $ 1-3 Finish $ 5-9 Style $ 11-18 Item $ 20-24 Price 27-32;

b. input StockNumber $ 1-3 Price 27-32 Item $ 20-24 Finish $ 5-9 Style $ 11-18;

c. input $ StockNumber 1-3 Price 27-32 $ Item 20-24 $ Finish 5-9 $ Style 11-18;

d. input StockNumber $ 1-3 Price $ 27-32 Item $ 20-24 Finish $ 5-9 Style $ 11-18;

Correct answer: b

You can use column input to read fields in any order. You must specify the variable name to be

created, identify character values with a $, and name the correct starting column and ending

column for each field.

Field Name Start Column End Column Data Type

StockNumber 1 3 character

Finish 5 9 character

Style 11 18 character

Item 20 24 character

Price 27 32 numeric

临床研究SAS高级编程 39

Creating and Modifying Variables (1)

Overview

To modify existing values or to create new variables, you can use

an assignment statement in any DATA step.

General form, assignment statement:

variable=expression;

 where

 variable names a new or existing variable

 expression is any valid SAS expression.

Note: The assignment statement is one of the few SAS statements that

doesn’t begin with a keyword.

For example, here is an assignment statement that assigns the

character value Toby Witherspoon to the variable Name:

Name='Toby Witherspoon';

临床研究SAS高级编程 40

Creating and Modifying Variables (2)

SAS expressions

You use SAS expressions in assignment statements and many other SAS

programming statements to

 transform variables

 create new variables

 conditionally process variables

 calculate new values

 assign new values.

An expression is a sequence of operands and operators that form a set of

instructions. The instructions are performed to produce a new value:

 Operands are variable names or constants. They can be numeric, character,

or both.

 Operators are special-character operators, grouping parentheses, or functions.

临床研究SAS高级编程 41

Creating and Modifying Variables (3)

Using operators in SAS expressions (1)

To perform a calculation, you use arithmetic operators. The table below
lists arithmetic operators.

When you use more than one arithmetic operator in an expression,

operations of priority I are performed before operations of priority II, and so on

consecutive operations that have the same priority are performed

from right to left within priority I

from left to right within priority II and III

you can use parentheses to control the order of operations.

Warning: When a value that is used with an arithmetic operator is missing, the
result of the expression is missing. The assignment statement assigns a missing
value to a variable if the result of the expression is missing.

Operator Action Example Priority

- negative prefix negative=-x; I

** exponentiation raise=x**y; I

* multiplication mult=x*y; II

/ division divide=x/y; II

+ addition sum=x+y; III

- subtraction diff=x-y; III

临床研究SAS高级编程 42

Creating and Modifying Variables (4)

Using operators in SAS expressions (2)

You use the following comparison operators to express a condition.

To link a sequence of expressions into compound expressions, you use

logical operators, including the following.

Operator Meaning Example

= or eq equal to name='Jones, C.'

^= or ne not equal to temp ne 212

> or gt greater than income>20000

< or lt less than partno lt "BG05"

>= or ge greater than or equal to id>='1543'

<= or le less than or equal to pulse le 85

Operator Meaning

AND or & and, both. If both expressions are true, then the compound expression is true.

OR or | or, either. If either expression is true, then the compound expression is true.

临床研究SAS高级编程 43

Creating and Modifying Variables (5)

More examples of assignment statements (1)

The assignment statement in the DATA step below creates a new
variable, TotalTime, by multiplying the values of TimeMin by 60 and then
adding the values of TimeSec.

data Sasuser.Stress;

 infile tests;

 input ID 1-4 Name $ 6-25 RestHr 27-29

 MaxHR 31-33 RecHR 35-37 TimeMin 39-40

 TimeSec 42-43 Tolerance $ 45;

 TotalTime=(timemin*60)+timesec;

run;

临床研究SAS高级编程 44

Creating and Modifying Variables (6)

More examples of assignment statements (2)

The expression can also contain the variable name that is on the

left side of the equal sign, as the following assignment statement

shows. This statement re-defines the values of the variable RestHR

as 10 percent higher.

data Sasuser.Stress;

 infile tests;

 input ID 1-4 Name $ 6-25 RestHr 27-29

 MaxHR 31-33 RecHR 35-37 TimeMin 39-40

 TimeSec 42-43 Tolerance $ 45

 resthr=resthr+(resthr*.10);

run;

临床研究SAS高级编程 45

Creating and Modifying Variables (7)

Date constants (1)

You can assign date values to variables in assignment statements

by using date constants. To represent a constant in SAS date form,

specify the date as 'ddmmmyy' or 'ddmmmyyyy', followed by a D.

General form, date constant:

'ddmmm<yy>yy' D or "ddmmm<yy>yy" D

 where

 dd is a one- or two-digit value for the day

 mmm is a three-letter abbreviation for the month (JAN, FEB, and so on)

 yy or yyyy is a two- or four-digit value for the year, respectively.

Note: Be sure to enclose the date in quotation marks.

临床研究SAS高级编程 46

Creating and Modifying Variables (8)

Date constants (2)

Example

In the following program, the second assignment statement assigns a

date value to the variable TestDate.
data Sasuser.Stress;

 infile tests;

 input ID 1-4 Name $ 6-25 RestHr 27-29

 MaxHR 31-33 RecHR 35-37 TimeMin 39-40

 TimeSec 42-43 Tolerance $ 45;

 TotalTime=(timemin*60)+timesec;

 TestDate='01jan2000'd;

run;

Note: You can also use SAS time constants and SAS datetime

constants in assignment statements.

 Time='9:25't;

 DateTime='18jan2005:9:27:05'dt;

临床研究SAS高级编程 47

Subsetting Data (1)

As you read your data, you can subset it by processing only those

observations that meet a specified condition. To do this, you can use a

subsetting IF statement in any DATA step.

The subsetting IF statement causes the DATA step to continue processing

only those raw data records or observations that meet the condition of the

expression specified in the IF statement. The resulting SAS data set or data

sets contain a subset of the original external file or SAS data set.

General form, subsetting IF statement:

IF expression;

 where expression is any valid SAS expression.

If the expression is true, the DATA step continues to process that record or
observation.

If the expression is false, no further statements are processed for that record or
observation, and control returns to the top of the DATA step.

临床研究SAS高级编程 48

Subsetting Data (2)

For example, the subsetting IF statement below selects only

observations whose values for Tolerance are D. The IF statement is

positioned in the DATA step so that other statements do not need to

process unwanted observations.
data Sasuser.Stress;

 infile tests;

 input ID 1-4 Name $ 6-25 RestHr 27-29

 MaxHR 31-33 RecHR 35-37 TimeMin 39-40

 TimeSec 42-43 Tolerance $ 45;

 if tolerance='D';

 TotalTime=(timemin*60)+timesec;

run;

Because Tolerance is a character variable, the value D must be

enclosed in quotation marks, and it must be the same case as in the

data set.

临床研究SAS高级编程 49

Reading Instream Data (1)

Throughout this section, our program has contained an INFILE

statement that identifies an external file to read.
data Sasuser.Stress;

 infile tests;

 input ID 1-4 Name $ 6-25 RestHr 27-29

 MaxHR 31-33 RecHR 35-37 TimeMin 39-40

 TimeSec 42-43 Tolerance $ 45;

 if tolerance='D';

 TotalTime=(timemin*60)+timesec;

run;

However, you can also read instream data lines that you enter

directly in your SAS program, rather than data that is stored in an

external file. Reading instream data is extremely helpful if you want to

create data and test your programming statements on a few

observations that you can specify according to your needs.

临床研究SAS高级编程 50

Reading Instream Data (2)

To read instream data, you use

 a DATALINES statement as the last statement in the DATA step (except for the
RUN statement) and immediately preceding the data lines

 a null statement (a single semicolon) to indicate the end of the input data.
data Sasuser.Stress;

 input ID 1-4 Name $ 6-25 RestHr 27-29

 MaxHR 31-33 RecHR 35-37 TimeMin 39-40

 TimeSec 42-43 Tolerance $ 45;

 datalines;

.

data lines go here

.

;

General form, DATALINES statement:

 DATALINES;

Note: You can use only one DATALINES statement in a DATA step. Use separate

DATA steps to enter multiple sets of data.

Note: You can also use CARDS; as the last statement in a DATA step (except for the RUN
statement) and immediately preceding the data lines. The CARDS statement is an alias for
the DATALINES statement.

Note: If your data contains semicolons, use the DATALINES4 statement plus a null statement
that consists of four semicolons (;;;;) to indicate the end of the input data.

临床研究SAS高级编程 51

Reading Instream Data (3)

Example
To read the data for the treadmill stress tests as instream data, you can

submit the following program:
data Sasuser.Stress;

 input ID 1-4 Name $ 6-25 RestHr 27-29

 MaxHR 31-33 RecHR 35-37 TimeMin 39-40

 TimeSec 42-43 Tolerance $ 45;

 if tolerance='D';

 TotalTime=(timemin*60)+timesec;

 datalines;

2458 Murray, W 72 185 128 12 38 D

2462 Almers, C 68 171 133 10 5 I

2501 Bonaventure, T 78 177 139 11 13 I

….

;

Warning: Notice that you do not need a RUN statement following the null
statement (the semicolon after the data lines). The null statement functions
as a step boundary when the DATALINES statement is used, so the DATA
step is executed as soon as SAS encounters it. If you do place a RUN
statement after the null statement, any statements between the null
statement and the RUN statement are not executed as part of the DATA
step.

临床研究SAS高级编程 52

Steps to Create a Raw Data File (1)

Using the _NULL_ keyword

Because the goal of your SAS program is to create a raw data file

and not a SAS data set, it is inefficient to list a data set name in the

DATA statement. Instead, use the keyword _NULL_, which enables

you to use the DATA step without actually creating a SAS data set. A

SET statement specifies the SAS data set that you want to read from.
 data _null_;

 set Sasuser.Stress;

The next step is to specify the output file.

临床研究SAS高级编程 53

Steps to Create a Raw Data File (2)

Specifying the raw data file (1)

You use the FILE and PUT statements to write the observations

from a SAS data set to a raw data file, just as you used the INFILE

and INPUT statements to create a SAS data set. These two sets of

statements work almost identically.

When writing observations to a raw data file, use the FILE

statement to specify the output file.

General form, FILE statement:

FILE file-specification <host-options list>;

where file-specification can take the form fileref to name a previously

defined file reference or ’filename’ to point to the actual name and

location of the file.

临床研究SAS高级编程 54

Steps to Create a Raw Data File (3)

Specifying the raw data file (2)

For example, if you want to read the Sasuser.Stress data set to a

raw data file that is referenced by the fileref Newdat, you would

begin your program with the following SAS statements.
 data _null_;

 set Sasuser.Stress;

 file newdat;

Instead of identifying the raw data file with a SAS fileref, you can

choose to specify the entire filename and location in the FILE

statement. For example, the following FILE statement points directly

to the C:\Clinic\Patients\Stress.dat file.
 data _null_;

 set Sasuser.Stress;

 file 'c:\clinic\patients\stress.dat';

临床研究SAS高级编程 55

Steps to Create a Raw Data File (4)

Describing the data (1)

Whereas the FILE statement specifies the output file, the PUT

statement describes the lines to write to the raw data file.

General form, PUT statement using column output:

PUT variable startcol-endcol . . .;

 where

 variable is the name of the variable whose value is written

 startcol indicates where in the line to begin writing the value

 endcol indicates where in the line to end the value.

临床研究SAS高级编程 56

Steps to Create a Raw Data File (5)

Describing the data (2)
In general, the PUT statement mirrors the capabilities of the INPUT statement. In this

case you are working with column output. Therefore, you need to specify the variable
name, starting column, and ending column for each field that you want to create.
Because you are creating raw data, you don’t need to follow character variable names
with a dollar sign ($).
data _null_;

 set Sasuser.Stress;

 file 'c:\clinic\patients\stress.dat';

 put id 1-4 name 6-25 resthr 27-29

 maxhr 31-33 rechr 35-37 timemin 39-40

 timesec 42-43 tolerance 45 totaltime 47-49;

run;

The resulting raw data file would look like this:

临床研究SAS高级编程 57

Creating and Managing Variables

Contents

Introduction

Accumulating totals

Initializing accumulator variables

Assign values conditionally

Specifying lengths for variables

Subsetting data

Assigning permanent labels and formats

Assigning values conditionally using SELECT Groups

Group statements using DO groups

临床研究SAS高级编程 58

Introduction (1)

Objective

You've learned how to create a SAS data set from raw data that is

stored in an external file. You've also learned how to subset

observations and how to assign values to variables.

This lesson shows you additional techniques for creating and

managing variables. In this lesson, you learn how to create sum

variables, assign variable values conditionally, select variables, and

assign permanent labels and formats to variables.

临床研究SAS高级编程 59

Obs ID Name RestHR MaxHR RecHR Tolerance TotalTime

Cumulative

Total Seconds

(+5,400)

TestLength

1 2458 Murray, W 72 185 128 D 758 6,158 Normal

2 2539 LaMance, K 75 168 141 D 706 6,864 Short

3 2572 Oberon, M 74 177 138 D 731 7,595 Short

4 2574 Peterson, V 80 164 137 D 849 8,444 Long

5 2584 Takahashi, Y 76 163 135 D 967 9,411 Long

Introduction (2)

临床研究SAS高级编程 60

Accumulating Totals (1)

It is often useful to create a variable that accumulates the values of

another variable.

Suppose you want to create the data set Clinic.Stress and to add a

new variable, SumSec, to accumulate the total number of elapsed

seconds in treadmill stress tests.

SAS Data Set Clinic.Stress (Partial Listing)

ID
Name RestHr MaxHR RecHR TimeMin TimeSec Tolerance TotalTime

2458 Murray, W 72 185 128 12 38 D 758

2462 Almers, C 68 171 133 10 5 I 605

2501 Bonaventure, T 78 177 139 11 13 I 673

2523 Johnson, R 69 162 114 9 42 S 582

2539 LaMance, K 75 168 141 11 46 D 706

临床研究SAS高级编程 61

Example

To find the total number of elapsed seconds in treadmill stress

tests, you need a variable (in this example, SumSec) whose value

begins at 0 and increases by the amount of the total seconds in each

observation. To calculate the total number of elapsed seconds in

treadmill stress tests, you use the Sum statement shown below.
data clinic.stress;

 infile tests;

 input ID $ 1-4 Name $ 6-25 RestHR 27-29 MaxHR 31-33

 RecHR 35-37 TimeMin 39-40 TimeSec 42-43

 Tolerance $ 45;

 TotalTime=(timemin*60)+timesec;

 SumSec+totaltime;

run;

Accumulating Totals (2)

临床研究SAS高级编程 62

Accumulating Totals (3)

The value of the variable on the left side of the plus sign (here,

SumSec) begins at 0 and increases by the value of TotalTime

with each observation.

SumSec = TotalTime + previous total

0

758 = 758 + 0

1363 = 605 + 758

2036 = 673 + 1363

2618 = 582 + 2036

3324 = 706 + 2618

临床研究SAS高级编程 63

Initializing Accumulator Variables (1)

In a previous example, the accumulator variable

SumSec was initialized to 0 by default before the first

observation was read. But what if you want to initialize

SumSec to a different number, such as the total seconds

from previous treadmill stress tests?

You can use the RETAIN statement to assign an initial

value other than the default value of 0 to a variable whose

value is assigned by a Sum statement.

The RETAIN statement
 assigns an initial value to a retained variable

 prevents variables from being initialized each time the DATA step
executes.

临床研究SAS高级编程 64

General form, simple RETAIN statement for initializing

accumulator variables:
RETAIN variable initial-value;

where

 variable is a variable whose values you want to retain

 initial-value specifies an initial value (numeric or character) for the
preceding variable.

Note The RETAIN statement

 is a compile-time only statement that creates variables if they do not
already exist

 initializes the retained variable to missing before the first execution of the
DATA step if you do not supply an initial value

 has no effect on variables that are read with SET, MERGE, or UPDATE
statements. (The SET and MERGE statements are discussed in later
chapters.)

Initializing Accumulator Variables (2)

临床研究SAS高级编程 65

Example

Suppose you want to add 5400 seconds (the accumulated total seconds

from a previous treadmill stress test) to the variable SumSec in the

Clinic.Stress data set when you create the data set. To initialize SumSec

with the value 5400, you use the RETAIN statement shown below:

data clinic.stress;

 infile tests;

 input ID $ 1-4 Name $ 6-25 RestHR 27-29 MaxHR 31-33

 RecHR 35-37 TimeMin 39-40 TimeSec 42-43

 Tolerance $ 45;

 TotalTime=(timemin*60)+timesec;

 retain SumSec 5400;

 sumsec+totaltime;

 run;

Initializing Accumulator Variables (3)

临床研究SAS高级编程 66

Initializing Accumulator Variables (4)

Now the value of SumSec begins at 5400 and increases by

the value of TotalTime with each observation.

SumSe

c
 = TotalTime + previous total

5400

6158 = 758 + 0

6763 = 605 + 6158

7436 = 673 + 6763

8018 = 582 + 7436

8724 = 706 + 8018

临床研究SAS高级编程 67

Assign Values Conditionally (1)

In the previous section, you created the variable

SumSec by using a Sum statement to add total seconds

from a treadmill stress test. This time, let's create a variable

that categorizes the length of time that a subject spends on

the treadmill during a stress test. This new variable,

TestLength, will be based on the value of the existing

variable TotalTime. The value of TestLength will be

assigned conditionally.

临床研究SAS高级编程 68

Assign Values Conditionally (2)

If TotalTime is . . . then TestLength is . . .

greater than 800 Long

750 - 800 Normal

less than 750 Short

To perform an action conditionally, use an IF-THEN statement. The

IF-THEN statement executes a SAS statement when the condition in

the IF clause is true.

临床研究SAS高级编程 69

General form, IF-THEN statement:

IF expression THEN statement;

where

 expression is any valid SAS expression

 statement is any executable SAS statement.

Assign Values Conditionally (3)

临床研究SAS高级编程 70

Example

To assign the value Long to the variable TestLength when the value of
TotalTime is greater than 800, add the following IF-THEN statement to your
DATA step:

data clinic.stress;

 infile tests;

 input ID $ 1-4 Name $ 6-25 RestHR 27-29 MaxHR 31-33

 RecHR 35-37 TimeMin 39-40 TimeSec 42-43

 Tolerance $ 45;

 TotalTime=(timemin*60)+timesec;

 retain SumSec 5400;

 sumsec+totaltime;

 if totaltime>800 then TestLength='Long';

 run;

SAS executes the assignment statement only when the condition
(TotalTime>800) is true. If the condition is false, then the value of TestLength
will be missing.

Assign Values Conditionally (4)

临床研究SAS高级编程 71

Assign Values Conditionally (5)

Comparison and logical operators (1)

Operator Comparison Operation

= or eq equal to

^= or ne not equal to

> or gt greater than

< or lt less than

>= or ge greater than or equal to

<= or le less than or equal to

in equal to one of a list

Operator Logical Operation

& and

| or

^ or ~ not

临床研究SAS高级编程 72

Comparison and logical operators (2)
Example

Comparison
if test<85 and time<=20 then Status='RETEST';

if region in ('NE','NW','SW') then Rate=fee-25;

if target gt 300 or sales ge 50000 then Bonus=salary*.05;

Logical
if status='OK' and type=3 then Count+1;

if (age^=agecheck | time^=3) & error=1 then Test=1;

if not (loghours<7500) then Schedule='Quarterly';

if region not in ('NE','SE') then Bonus=200;

if status='OK' and type=3 then Count+1; if status='S' or
cond='E' then Control='Stop';

if not(loghours<7500) then Schedule='Quarterly'; if region not

in ('NE','SE') then Bonus=200;

Note: the last two example shows that character values must be specified
in the same case in which they appear in the data set and must be
enclosed in quotation marks.

Assign Values Conditionally (6)

临床研究SAS高级编程 73

Logical comparisons that are enclosed in parentheses

are evaluated as true or false before they are compared to

other expressions. In the example below, the OR

comparison in parentheses is evaluated before the first

expression and the AND operator are evaluated.

Assign Values Conditionally (7)

临床研究SAS高级编程 74

In SAS, any numeric value other than 0 or missing is

true, and a value of 0 or missing is false. Therefore, a

numeric variable or expression can stand alone in a

condition. If its value is a number other than 0 or missing,

the condition is true; if its value is 0 or missing, the

condition is false.

 0 = False

 . = False

 1 = True

Assign Values Conditionally (8)

临床研究SAS高级编程 75

As a result, you need to be careful when using the OR

operator with a series of comparisons. Remember that

only one comparison in a series of OR comparisons must

be true to make a condition true, and any nonzero,

nonmissing constant is always evaluated as true. Therefore,

the following subsetting IF statement is always true:

if x=1 or 2;

Assign Values Conditionally (9)

临床研究SAS高级编程 76

SAS first evaluates x=1, and the result can be either

true or false; however, since the 2 is evaluated as nonzero

and nonmissing (true), the entire expression is true. In this

statement, however, the condition is not necessarily true

because either comparison can evaluate as true or false:

if x=1 or x=2;

Assign Values Conditionally (10)

临床研究SAS高级编程 77

Providing an alternative action

Now suppose you want to assign a value to TestLength based on

the other possible values of TotalTime. One way to do this is to add

IF-THEN statements for the other two conditions, as shown below.

if totaltime>800 then TestLength='Long';

if 750<=totaltime<=800 then TestLength='Normal';

if totaltime<750 then TestLength='Short';

However, when the DATA step executes, each IF statement is

evaluated in order, even if the first condition is true. This wastes

system resources and slows the processing of your program.

Assign Values Conditionally (11)

临床研究SAS高级编程 78

Providing an alternative action

Instead of using a series of IF-THEN statements, you can use the

ELSE statement to specify an alternative action to be performed

when the condition in an IF-THEN statement is false. As shown

below, you can write multiple ELSE statements to specify a series of

mutually exclusive conditions

if totaltime>800 then TestLength='Long';

else if 750<=totaltime<=800 then TestLength='Normal';

else if totaltime<750 then TestLength='Short';

Assign Values Conditionally (12)

临床研究SAS高级编程 79

General form, ELSE statement (1)
ELSE statement;

where statement is any executable SAS statement, including another IF-THEN
statement.

So, to assign a value to TestLength when the condition in your IF-THEN
statement is false, you can add the ELSE statement to your DATA step, as
shown below:

data clinic.stress;

 infile tests;

 input ID $ 1-4 Name $ 6-25 RestHR 27-29 MaxHR 31-33

 RecHR 35-37 TimeMin 39-40 TimeSec 42-43

 Tolerance $ 45;

 TotalTime=(timemin*60)+timesec;

 retain SumSec 5400;

 sumsec+totaltime;

 if totaltime>800 then TestLength='Long';

 else if 750<=totaltime<=800 then TestLength='Normal';

 else if totaltime<750 then TestLength='Short';

run;

Assign Values Conditionally (13)

临床研究SAS高级编程 80

General form, ELSE statement (2)

Using ELSE statements with IF-THEN statements can save

resources:

Using IF-THEN statements without the ELSE statement causes SAS

to evaluate all IF-THEN statements.

Using IF-THEN statements with the ELSE statement causes SAS to

execute IF-THEN statements until it encounters the first true statement.

Subsequent IF-THEN statements are not evaluated.

For greater efficiency, construct your IF-THEN/ELSE statements

with conditions of decreasing probability.

Assign Values Conditionally (14)

临床研究SAS高级编程 81

General form, ELSE statement (3)
Note Remember that you can use PUT statements to test

your conditional logic.

data clinic.stress;

 infile tests;

 input ID $ 1-4 Name $ 6-25 RestHR 27-29 MaxHR 31-33

 RecHR 35-37 TimeMin 39-40 TimeSec 42-43

 Tolerance $ 45;

 TotalTime=(timemin*60)+timesec;

 retain SumSec 5400;

 sumsec+totaltime;

 if totaltime>800 then TestLength='Long';

 else if 750<=totaltime<=800 then TestLength='Normal';

 else put 'NOTE: Check this Length: ' totaltime=;

run;

Assign Values Conditionally (15)

临床研究SAS高级编程 82

Specifying Lengths for Variables (1)

Previously, you added IF-THEN and ELSE statements to a DATA

step in order to create the variable TestLength. Values for TestLength

were assigned conditionally, based on the value for TotalTime.
 data clinic.stress;

infile tests;

input ID $ 1-4 Name $ 6-25 RestHR 27-29 MaxHR 31-33

 RecHR 35-37 TimeMin 39-40 TimeSec 42-43

 Tolerance $ 45;

TotalTime=(timemin*60)+timesec;

retain SumSec 5400;

sumsec+totaltime;

if totaltime>800 then TestLength='Long';

else if 750<=totaltime<=800 then TestLength='Normal';

else if totaltime<750 then TestLength='Short';

run;

临床研究SAS高级编程 83

But look what happens when you submit this program.

During compilation, when creating a new character

variable in an assignment statement, SAS allocates as

many bytes of storage space as there are characters in the

first value that it encounters for that variable. In this case,

the first value for TestLength occurs in the IF-THEN

statement, which specifies a four-character value (Long).

So TestLength is assigned a length of 4, and any longer

values (Normal and Short) are truncated.

Specifying Lengths for Variables (2)

临床研究SAS高级编程 84

Specifying Lengths for Variables (3)

The example above assigns a character constant as the value of the new

variable. The table that follows lists more examples of the default type and

length that SAS assigns when the type and length of a variable are not

explicitly set.

Variable TestLength

(Partial Listing)

TestLength

Norm

Shor

Shor

Shor

Norm

Shor

Long

...

临床研究SAS高级编程 85

Specifying Lengths for Variables (4)

Expression Example Resulting

Type of X

Resulting

Length of X

Explanation

Character

variable

length a $ 4;

x=a;

Character

variable

4 Length of source variable

Character literal

(character

constant)

x='ABC';

x='ABCDE';

Character

variable

3 Length of first literal (constant) encountered

Concatenation of

variables

length a $ 4

b $ 6

c $ 2;

x=a||b||c;

Character

variable

12 Sum of the lengths of all variables

Concatenation of

variables and

literal

length a $ 4;

x=a||'CAT';

x=a||'CATNIP';

Character

variable

7 Sum of the lengths of variables and literals

(constants) encountered in first assignment

statement

Numeric variable length a 4;

x=a;

Numeric

variable

8 Default numeric length (8 bytes unless otherwise

specified)

Note: In general, it is not recommended that you

change the default length of numeric variables, as

this as can affect numeric precision. See the SAS

documentation for more information.

临床研究SAS高级编程 86

General form, LENGTH statement
LENGTH variable(s) <$> length;

Where

variable(s) names the variable(s) to be assigned a length

 $ is specified if the variable is a character variable

 length is an integer that specifies the length of the variable.

Example
 length Type $ 8;

 length Address1 Address2 Address3 $ 200;

 length FirstName $ 12 LastName $ 16;

Within your program, you include a LENGTH statement to assign a
length to accommodate the longest value of the variable TestLength.
The longest value is Normal, which has six characters. Because
TestLength is a character variable, you must follow the variable name
with a dollar sign ($).

Specifying Lengths for Variables (5)

临床研究SAS高级编程 87

data clinic.stress;

infile tests;

input ID $ 1-4 Name $ 6-25 RestHR 27-29 MaxHR 31-33

RecHR 35-37 TimeMin 39-40 TimeSec 42-43

Tolerance $ 45;

TotalTime=(timemin*60)+timesec;

retain SumSec 5400;

sumsec+totaltime;

length TestLength $ 6;

if totaltime>800 then testlength='Long';

else if 750<=totaltime<=800 then testlength='Normal';

else if totaltime<750 then TestLength='Short';
run;

Note: Make sure the LENGTH statement appears before any other reference to the variable in
the DATA step. If the variable has been created by another statement, then a later use of the
LENGTH statement will not change its size.

Now that you have added the LENGTH statement to your program, the values of TestLength
are no longer truncated.

Specifying Lengths for Variables (6)

Variable TestLength

(Partial Listing)

TestLength

Norm

Shor

Shor

Shor

Norm

Shor

Long

...

临床研究SAS高级编程 88

Subsetting Data (1)

Deleting unwanted observations

So far in this chapter, you've learned to use IF-THEN statements

to execute assignment statements conditionally. But you can specify

any executable SAS statement in an IF-THEN statement. For

example, you can use an IF-THEN statement with a DELETE

statement to determine which observations to omit from the data set

that SAS is creating as it reads raw data.

The IF-THEN statement executes a SAS statement when the

condition in the IF clause is true.

 The DELETE statement stops processing the current observation.

临床研究SAS高级编程 89

General form, DELETE statement

DELETE;

To conditionally execute a DELETE statement, you

submit a statement in the following general form:

IF expression THEN DELETE;

If the expression is

 true, the DELETE statement executes, and control returns to the top of

the DATA step (the observation is deleted).

 false, the DELETE statement does not execute, and processing

continues with the next statement in the DATA step.

Subsetting Data (2)

临床研究SAS高级编程 90

Example

The IF-THEN and DELETE statements below omit any observations whose values
for RestHR are lower than 70.

 data clinic.stress;

infile tests;

input ID $ 1-4 Name $ 6-25 RestHR 27-29 MaxHR 31-33

 RecHR 35-37 TimeMin 39-40 TimeSec 42-43

 Tolerance $ 45;

if resthr<70 then delete;

TotalTime=(timemin*60)+timesec;

retain SumSec 5400;

sumsec+totaltime;

length TestLength $ 6;

if totaltime>800 then testlength='Long';

else if 750<=totaltime<=800 then testlength='Normal';

else if totaltime<750 then TestLength='Short';

 run;

Subsetting Data (3)

临床研究SAS高级编程 91

Selecting Variables with the DROP= and KEEP= Data

Set Options

Sometimes you might need to read and process fields that you

don't want to keep in your data set. In this case, you can use the

DROP= and KEEP= data set options to specify the variables that

you want to drop or keep.

Use the KEEP= option instead of the DROP= option if more

variables are dropped than kept. You specify data set options in

parentheses after a SAS data set name.

Subsetting Data (4)

临床研究SAS高级编程 92

General form, DROP= and KEEP= data set options:

(DROP=variable(s))

(KEEP=variable(s))

where

 the DROP= or KEEP= option, in parentheses, follows the name of the

data set that contains the variables to be dropped or kept

 variable(s) identifies the variables to drop or keep.

Subsetting Data (5)

临床研究SAS高级编程 93

Example
Suppose you are interested in keeping only the new variable TotalTime

and not the original variables TimeMin and TimeSec. You can drop TimeMin
and TimeSec when you create the Stress data set

data clinic.stress(drop=timemin timesec);

infile tests;

input ID $ 1-4 Name $ 6-25 RestHR 27-29 MaxHR 31-33

 RecHR 35-37 TimeMin 39-40 TimeSec 42-43

 Tolerance $ 45;

if tolerance='D';

TotalTime=(timemin*60)+timesec;

retain SumSec 5400;

sumsec+totaltime;

length TestLength $ 6;

if totaltime>800 then testlength='Long';

else if 750<=totaltime<=800 then testlength='Normal';

else if totaltime<750 then TestLength='Short';

run;

Subsetting Data (6)

临床研究SAS高级编程 94

Another way to exclude variables from your data set is to use the DROP

statement or the KEEP statement. Like the DROP= and KEEP= data set

options, these statements drop or keep variables. However, the DROP

statement differs from the DROP= data set option in the following ways:

 You cannot use the DROP statement in SAS procedure steps.

 The DROP statement applies to all output data sets that are named in the DATA
statement.

To exclude variables from some data sets but not from others, place the
appropriate DROP= data set option next to each data set name that is specified in the
DATA statement.

The KEEP statement is similar to the DROP statement, except that the

KEEP statement specifies a list of variables to write to output data sets. Use

the KEEP statement instead of the DROP statement if the number of variables

to keep is significantly smaller than the number to drop.

Subsetting Data (7)

临床研究SAS高级编程 95

General form, DROP and KEEP statements:

DROP variable(s);

KEEP variable(s);

where variable(s) identifies the variables to drop or keep.

Subsetting Data (8)

临床研究SAS高级编程 96

Example
data clinic.stress;

infile tests;

input ID $ 1-4 Name $ 6-25 RestHR 27-29 MaxHR 31-33

 RecHR 35-37 TimeMin 39-40 TimeSec 42-43

 Tolerance $ 45;

if tolerance='D';

drop timemin timesec;

TotalTime=(timemin*60)+timesec;

retain SumSec 5400;

sumsec+totaltime;

length TestLength $ 6;

if totaltime>800 then testlength='Long';

else if 750<=totaltime<=800 then testlength='Normal';

else if totaltime<750 then TestLength='Short';

run;

Subsetting Data (9)

临床研究SAS高级编程 97

At this point, you've read and manipulated your raw data

to obtain the observations, variables, and variable values

that you want. Your final task in this chapter is to

permanently assign labels and formats to variables.

Assigning Permanent Labels and Formats (1)

临床研究SAS高级编程 98

Example
data clinic.stress;

infile tests;

input ID $ 1-4 Name $ 6-25 RestHR 27-29 MaxHR 31-33

 RecHR 35-37 TimeMin 39-40 TimeSec 42-43

 Tolerance $ 45;

if resthr<70 then delete;

if tolerance='D';

drop timemin timesec;

TotalTime=(timemin*60)+timesec;

retain SumSec 5400;

sumsec+totaltime;

length TestLength $ 6;

if totaltime>800 then testlength='Long';

else if 750<=totaltime<=800 then testlength='Normal';

else if totaltime<750 then TestLength='Short';

label sumsec='Cumulative Total Seconds (+5,400)';

format sumsec comma6.;

run;

Assigning Permanent Labels and Formats (2)

临床研究SAS高级编程 99

Assigning Values Conditionally Using SELECT Groups (1)

Earlier in this chapter, you learned to assign values conditionally by

using IF-THEN/ELSE statements. You can also use SELECT groups

in DATA steps to perform conditional processing.

A SELECT group contains these statements:

This statement... Performs this action...

SELECT begins a SELECT group.

WHEN identifies SAS statements that are executed when a

particular condition is true.

OTHERWISE (optional) specifies a statement to be executed if no WHEN condition

is met.

END ends a SELECT group.

临床研究SAS高级编程 100

You can decide whether to use IF-THEN/ELSE

statements or SELECT groups based on the following

criteria.

When you have a long series of mutually exclusive

conditions and the comparison is numeric, using a SELECT

group is slightly more efficient than using a series of IF-

THEN or IF-THEN/ELSE statements because CPU time is

reduced. SELECT groups also make the program easier to

read and debug.

For programs with few conditions, use IF-THEN/ELSE

statements.

Assigning Values Conditionally Using SELECT Groups (2)

临床研究SAS高级编程 101

General form, SELECT group:
SELECT <(select-expression)>;

 WHEN-1 (when-expression-1 <..., when-expression-n>) statement;

 WHEN-n (when-expression-1 <..., when-expression-n>) statement;

 <OTHERWISE statement;>

 END;

 where
SELECT begins a SELECT group.

the optional select-expression specifies any SAS expression that evaluates to a single
value.

WHEN identifies SAS statements that are executed when a particular condition is true.

when-expression specifies any SAS expression, including a compound expression. You

must specify at least one when-expression.

statement is any executable SAS statement. You must specify the statement argument.

the optional OTHERWISE statement specifies a statement to be executed if no WHEN
condition is met.

END ends a SELECT group.

Assigning Values Conditionally Using SELECT Groups (3)

临床研究SAS高级编程 102

Example: select group in a data step

data emps(keep=salary group);

set sasuser.payrollmaster;

length Group $ 20;

select(jobcode);

when ("FA1") group="Flight Attendant I";

when ("FA2") group="Flight Attendant II";

when ("FA3") group="Flight Attendant III";

when ("ME1") group="Mechanic I";

when ("ME2") group="Mechanic II";

when ("ME3") group="Mechanic III";

when ("NA1") group="Navigator I";

when ("NA2") group="Navigator II";

when ("NA3") group="Navigator III";

when ("PT1") group="Pilot I";

when ("PT2") group="Pilot II";

when ("PT3") group="Pilot III";

when ("TA1","TA2","TA3") group="Ticket Agents";

otherwise group="Other";

end;

 run;

Assigning Values Conditionally Using SELECT Groups (4)

临床研究SAS高级编程 103

Specifying SELECT statements with expressions

As you saw in the general form for SELECT groups, you can optionally

specify a selectexpression in the SELECT statement. The way SAS

evaluates a when-expression depends on whether you specify a select-

expression.

If you do specify a select-expression in the SELECT statement, SAS

compares the value of the select-expression with the value of each when-

expression. That is, SAS evaluates the selectexpression and when-

expression, compares the two for equality, and returns a value of true or

false.

If the comparison is true, SAS executes the statement in the WHEN statement.

If the comparison is false, SAS proceeds either to the next when-expression in

the current WHEN statement, or to the next WHEN statement if no more

expressions are present. If no WHEN statements remain, execution proceeds

to the OTHERWISE statement, if one is present.

Assigning Values Conditionally Using SELECT Groups (5)

临床研究SAS高级编程 104

Specifying SELECT statements with expressions
Warning If the result of all SELECT-WHEN comparisons is false and no

OTHERWISE statement is present, SAS issues an error message and
stops executing the DATA step.

In the following SELECT group, SAS determines the value of toy and
compares it to values in each WHEN statement in turn. If a WHEN statement
is true compared to the toy value, then SAS assigns the related price and
continues processing the rest of the DATA step. If none of the comparisons
is true, then SAS executes the OTHERWISE statement and writes a
debugging message to the SAS log.

select (toy);

when ("Bear") price=35.00;

when ("Violin") price=139.00;

when ("Top","Whistle","Duck") price=7.99;

otherwise put "Check unknown toy: " toy=;

end;

Assigning Values Conditionally Using SELECT Groups (6)

临床研究SAS高级编程 105

Specifying SELECT Statements without Expressions

If you don't specify a select-expression, SAS evaluates

each when-expression to produce a result of true or false.

 If the result is true, SAS executes the statement in the WHEN

statement.

 If the result is false, SAS proceeds either to the next when-

expression in the current

WHEN statement, or to the next WHEN statement if no more

expressions are present, or to the OTHERWISE statement if one is

present. (That is, SAS performs the action that is indicated in the first

true WHEN statement.)

Assigning Values Conditionally Using SELECT Groups (7)

临床研究SAS高级编程 106

Specifying SELECT statements without expressions
If more than one WHEN statement has a true when-expression, only the first

WHEN statement is used; once a when-expression is true, no other when-expressions
are evaluated.

Warning If the result of all when-expressions is false and no OTHERWISE statement is
present, SAS issues an error message.

In the example below, the SELECT statement does not specify a select-expression.
The WHEN statements are evaluated in order, and only one is used. For example, if
the value of toy is Bear and the value of month is FEB, only the second WHEN
statement is used, even though the condition in the third WHEN statement is also met.
In this case, the variable price is assigned the value 25.00.

select;

when (toy="Bear" and month in ('OCT', 'NOV', 'DEC'))

price=45.00;

when (toy="Bear" and month in ('JAN', 'FEB'))

price=25.00;

when (toy="Bear") price=35.00;

otherwise;

end;

Assigning Values Conditionally Using SELECT Groups (8)

临床研究SAS高级编程 107

Group Statements Using DO Groups (1)

So far in this chapter, you've seen examples of

conditional processing (IF-THEN/ELSE statements and

SELECT groups) that execute only a single SAS statement

when a condition is true. However, you can also execute a

group of statements as a unit by using DO groups.

To construct a DO group, you use the DO and END

statements along with other SAS statements.

临床研究SAS高级编程 108

General form, simple DO group

 DO;

 SAS statements

 END;

where

 the DO statement begins DO-group processing

 SAS statements between the DO and END statements are called a DO

group and execute as a unit

 the END statement terminates DO-group processing.

Note: You can nest DO statements within DO groups.

Group Statements Using DO Groups (2)

临床研究SAS高级编程 109

Example
data clinic.stress;

infile tests;

input ID $ 1-4 Name $ 6-25 RestHR 27-29 MaxHR 31-33

 RecHR 35-37 TimeMin 39-40 TimeSec 42-43

 Tolerance $ 45;

TotalTime=(timemin*60)+timesec;

retain SumSec 5400;

sumsec+totaltime;

length TestLength $ 6 Message $ 20;

if totaltime>800 then

do;

 testlength='Long';

 message='Run blood panel';

end;

else if 750<=totaltime<=800 then testlength='Normal';

else if totaltime<750 then TestLength='Short';

run;

Group Statements Using DO Groups (3)

临床研究SAS高级编程 110

Indenting and nesting DO groups
You can nest DO groups to any level, just like you nest IF-THEN/ELSE

statements. (The memory capabilities of your system might limit the number
of nested DO statements that you can use. For details, see the SAS
documentation about how many levels of nested DO statements your
system's memory can support.)

The following is an example of nested DO groups:
 do;

 statements;

 do;

 statements;

 do;

 statements;

 end;

 end;

 end;

Group Statements Using DO Groups (4)

临床研究SAS高级编程 111

There are three other forms of the DO statement

 The iterative DO statement executes statements between DO

and END statements repetitively based on the value of an index

variable. The iterative DO statement can contain a WHILE or UNTIL

clause.

 The DO UNTIL statement executes statements in a DO loop

repetitively until a condition is true, checking the condition after each

iteration of the DO loop.

 The DO WHILE statement executes statements in a DO loop

repetitively while a condition is true, checking the condition before

each iteration of the DO loop.

Group Statements Using DO Groups (5)

临床研究SAS高级编程 112

Quiz

Now consider the revised program below. What is the

value of Count after the third observation is read?
data work.newnums;

 infile numbers;

 input Tens 2-3;

 retain Count 100;

 count+tens;

run;

a.missing b.0 c.100 d.130

Correct answer: d

The RETAIN statement assigns an initial value of 100 to the variable
Count, so the value of Count in the third observation would be
100+10+20+0, or 130.

临床研究SAS高级编程 113

Quiz

What is the length of the variable Type, as created in the DATA step
below?

data finance.newloan;

 set finance.records;

 TotLoan+payment;

 if code='1' then Type='Fixed';

 else Type='Variable';

 length type $ 10;

run;

a.5 b.8 c.10 d. it depends on the first value of Type

Correct answer: a
The length of a new variable is determined by the first reference in the DATA
step, not by data values. In this case, the length of Type is determined by the
value Fixed. The LENGTH statement is in the wrong place; it must be read
before any other reference to the variable in the DATA step. The LENGTH
statement cannot change the length of an existing variable.

临床研究SAS高级编程 114

Access to PC Files

Contents

Introduction

LIBNAME statement

Import Wizard and PROC IMPORT

SAS/ACCESS SQL Pass-Through Facility

临床研究SAS高级编程 115

Introduction (1)

SAS/ACCESS for PC files enables you to read data from PC files, to

use that data in SAS reports or applications, and to use SAS data sets

to create PC files in various formats.

Because Microsoft Office is so widely used, it is sometimes

necessary for you to import data directly from Microsoft Excel or

Microsoft Access. Here in this section, we will take PC files of Microsoft

Excel or Microsoft Access as example.

SAS provides several ways to read Microsoft Excel and Access files.

Some commonly used SAS tools include:

the LIBNAME statement

the Import Wizard/PROC IMPORT

the SQL Pass-Through Facility

SAS Enterprise Guide.

临床研究SAS高级编程 116

Introduction (2)

In Microsoft Excel, the lab normal data file might look like the

following:

临床研究SAS高级编程 117

Introduction (3)

In Microsoft Access the lab normal data might look like this:

临床研究SAS高级编程 118

LIBNAME Statement (1)

Beginning with SAS 9.1, the LIBNAME statement can be used to simply map

to an Excel or Access database. For example, the following SAS code reads in

and then prints the lab normal file normal_ranges.xls.
libname xlsfile EXCEL "C:\normal_ranges.xls";

proc contents

 data = xlsfile._all_;

run;

proc print

 data = XLSFILE.'normal_ranges$'n;

run;

Note that the “EXCEL” engine specification is optional, because SAS would read
the “.xls” extension in the physical filename and assume it indicates a Microsoft Excel
file.

Also note that the “xlsfile” libref refers to the entire Excel workbook. In the
subsequent PROC PRINT, the “normal_ranges” must be specified so SAS will know
which Excel worksheet to read.

The data set/worksheet name in the PROC PRINT looks odd because of the
existence of a special “$” character, which is normally not allowed as part of a data set
name.

临床研究SAS高级编程 119

LIBNAME Statement (2)

The normals_ranges.mdb Microsoft Access file could be read in with

the following similar SAS code.
libname accfile ACCESS "C:\normal_ranges.mdb";

proc contents

 data = accfile._all_;

run;

proc print

 data = accfile.normal_ranges;

run;

Again, the “ACCESS” specification as a LIBNAME engine is optional, as the libref

would default to Microsoft Access because “.mdb” is in the physical filename.

Note that the ACCESS LIBNAME engine seems by default to import all text fields

as 255 characters in length.

Also note that all dates that come from Microsoft Access via the ACCESS engine

are represented in SAS as SAS datetime fields. This is because Access has only

datetime fields compared with SAS, which has date, time, and datetime variables.

临床研究SAS高级编程 120

LIBNAME Statement (3)

SAS ACCESS and EXCEL librefs can be specified

interactively by right-clicking on the Libraries icon in the

SAS Explorer window and completing the parameters in

the New Library window. You can define a libref called

xlsfile that points to normal_ranges like following picture.

临床研究SAS高级编程 121

LIBNAME Statement (4)

Be aware that the LIBNAME statement approach allows for both reading and writing to and
from Microsoft Office files, which means the contents of the Microsoft Office files can be
changed by SAS.

临床研究SAS高级编程 122

Import Wizard and PROC IMPORT (1)

The interactive SAS Import Wizard provides an easy

way to import the contents of Microsoft Excel and Access

files into SAS. Here again, the Import Wizard is essentially

a graphical user interface that builds the PROC IMPORT

code for you.

Begin in the interactive SAS windowing environment by

selecting “File” from the toolbar and then “Import Data…”

from the drop-down menu. A window like the following will

appear, where you can select Microsoft Excel as a

standard data source.

临床研究SAS高级编程 123

Import Wizard and PROC IMPORT (2)

Click “Next,” and a file browser window will open that allows for the drill-down and selection of the
Microsoft Excel file of interest. Once the file is selected, a Select Table window will open. This
window allows you to pick which worksheet in the Excel file you want to turn into a SAS data set.
Click the “Options” button to see the new options available with SAS 9.1 and PROC IMPORT.

临床研究SAS高级编程 124

Import Wizard and PROC IMPORT (3)

Note that the default options were chosen in the preceding window. We will look at those further
when we explore the subsequent PROC IMPORT code. Now, click “OK” in the Spreadsheet Options
window and then click “Next” in the Select Table window. The Select Library and Member window
opens, which allows for the selection of a SAS library and data set name as follows.

临床研究SAS高级编程 125

Import Wizard and PROC IMPORT (4)

Click “Next” and SAS will prompt you to see if you want to save the PROC IMPORT
code generated by the Import Wizard. Click “Finish” to complete the file import.

临床研究SAS高级编程 126

Import Wizard and PROC IMPORT (5)

Here is the PROC IMPORT code generated by SAS

from this run.
PROC IMPORT OUT= WORK.normal_ranges

 DATAFILE= "C:\normal_ranges.xls"

 DBMS=EXCEL REPLACE;

 SHEET="normal_ranges$";

 GETNAMES=YES;

 MIXED=NO;

 SCANTEXT=YES;

 USEDATE=YES;

 SCANTIME=YES;

RUN;

If the options on PROC IMPORT do not produce what is desired,
they can be changed and resubmitted, or the code can be saved to
edit and run in batch mode later.

临床研究SAS高级编程 127

Import Wizard and PROC IMPORT (6)

Here are the new options available with SAS 9.1 along with my recommended

settings.

The Import Wizard process for Microsoft Access files works like the one for Excel files
and produces similar PROC IMPORT code. Keep in mind that text fields get a default
length of 255 characters when PROC IMPORT is used with Microsoft Access files.

Option Purpose

DBSASLABEL By default, the SAS label for an imported variable is set to the column name. Setting

DBSASLABEL=NONE places null values into the SAS labels.

MIXED Converts numeric values to character values if a column displays numeric and character text cells.

Note that the default here is NO. Keep in mind that SAS scans only the first eight rows of the Excel

column to determine whether the column is numeric or character. If SAS picks character and there are

numeric cells later, then those will be set to blank. For this reason consider setting MIXED=YES.

SCANTEXT When set to YES, this option tells SAS to scan the entire column to determine the width of the

column. Always leave this set to YES.

SCANTIME When set to YES, this option applies a SAS time format to a field if it appears to contain only time

entries.

TEXTSIZE This option hardcodes the maximum width of a character variable. It overrides SCANTEXT=YES.

USEDATE When set to YES, this option formats SAS datetime fields with a date format. If you prefer to use

datetime formats with datetime fields, set USEDATE=NO.

临床研究SAS高级编程 128

SAS/ACCESS SQL Pass-Through Facility (1)

The SAS/ACCESS SQL Pass-Through Facility is another way for SAS to
dynamically establish a connection to Microsoft Excel or Access files. You can
connect to the Microsoft Excel file normal_ranges.xls by using the following SAS code.

**** OBTAIN AVAILABLE WORKSHEET NAMES FROM EXCEL FILE;

proc sql;

 connect to excel (path = "C:\normal_ranges.xls");

 select table_name from connection to excel(jet::tables);

quit;

**** GO GET NORMAL_RANGES WORKSHEET FROM EXCEL FILE;

proc sql;

 connect to EXCEL (path = "C:\normal_ranges.xls" header = yes

 mixed = yes version = 2000);

 create table normal_ranges as

 select * from connection to excel

 (select * from [normal_ranges$]);

 disconnect from excel;

quit;

Study the preceding SAS code. Notice how the first SQL step uses a special Microsoft Jet
Engine query to obtain the names of the worksheet in normal_ranges.xls. Also note that the
SQL step that fetches the normal_ranges worksheet from normal_ranges.xls does so by
placing the worksheet in braces in the inner SELECT statement.

临床研究SAS高级编程 129

SAS/ACCESS SQL Pass-Through Facility (2)

The following SAS code uses the SQL Pass-Through Facility to
connect to the Microsoft Access file normal_ranges.mdb.

*** OBTAIN AVAILABLE TABLE NAMES FROM ACCESS FILE;

proc sql;

 connect to access (path = "C:\normal_ranges.mdb");

 select table_name from connection to access(jet::tables);

quit;

**** GO GET NORMAL_RANGES WORKSHEET FROM ACCESS FILE;

proc sql;

 connect to access (path="C:\normal_ranges.mdb");

 create table normal_ranges as

 select * from connection to access

 (select * from normal_ranges);

 disconnect from access;

quit;

Note that the SQL Pass-Through Facility to Microsoft Excel and Access
files does default to 255 characters in length for character fields.

临床研究SAS高级编程 130

Access to Oracle

Contents

Introduction

SAS/ACCESS SQL Pass-Through Facility

SAS/ACCESS LIBNAME statement

临床研究SAS高级编程 131

Introduction

Importing relational databases and clinical data

management systems

Most clinical data management systems used for clinical trials

today store their data in relational database software such as Oracle

or Microsoft SQL Server.

A relational database is composed of a set of rectangular data

matrices called “tables” that relate or associate with one another by

certain key fields.

The language most often used to work with relational databases is

structured query language (SQL). The SAS/ACCESS SQL Pass-

Through Facility and the SAS/ACCESS LIBNAME engine are the two

methods that SAS provides for extracting data from relational

databases.

临床研究SAS高级编程 132

SAS/ACCESS SQL Pass-Through Facility (1)

The SAS/ACCESS SQL Pass-Through Facility has long been one of
the only ways of getting data out of a relational database. It is still a
flexible means of obtaining relational database data, as it allows for
using SAS SQL as a means of filtering or modifying data on the way into
SAS.

proc sql;

 connect to oracle as oracle_tables

 (user = USERID orapw = PASSWORD path = "INSTANCE");

 create table AE as

 select * from connection to oracle_tables

 (select * from AE_ORACLE_TABLE);

 disconnect from oracle_tables;

quit;

临床研究SAS高级编程 133

SAS/ACCESS SQL Pass-Through Facility (2)

This code simply extracts the data from the table named

“AE_ORACLE_TABLE” within Oracle and places it in its entirety

in a SAS work library data set called AE.

The USER, ORAPW, and PATH parameters are specific to

the Oracle database settings at a particular site, so you would

need to consult an Oracle database administrator to get the

proper values.

The good thing about the SQL Pass-Through Facility is that it

lets you create a more desirable SAS data set with some slight

modifications.

临床研究SAS高级编程 134

SAS/ACCESS SQL Pass-Through Facility (3)

proc sql;

 connect to oracle as oracle_tables

 (user = USERID orapw = PASSWORD path ="INSTANCE");

 create table library.AE as

 select * from connection to oracle_tables

 (select subject, verbatim, ae_date, pt_text

 from AE_ORACLE_TABLE

 where query_clean=”YES”);

 disconnect from oracle_tables;

quit;

Notice how the highlighted changes allow for a permanent SAS data set
to be created containing only the variables desired and only the records that
have all data queries resolved by data management.

临床研究SAS高级编程 135

SAS/ACCESS LIBNAME statement (1)

The Oracle specific syntax for the LIBNAME statement is:

LIBNAME libref oracle <connection-options> <LIBNAME - options>

libref is any SAS name that serves as an alias to associate SAS

with a database, schema, server, or group of tables and views.

oracle is the SAS/ACCESS engine name for the interface to Oracle.

connection – options provide connection information and control

how SAS manages the timing and concurrence of the connection to

the DBMS.

LIBNAME – options define how DBMS objects are processed by

SAS. Some LIBNAME options can enhance performance; others

determine locking or naming behavior.

临床研究SAS高级编程 136

SAS/ACCESS LIBNAME statement (2)

Beginning with SAS 7, a new SAS/ACCESS LIBNAME statement

interface was available for accessing data in relational databases.

For example, the previous example of the SQL Pass-Through Facility

can be distilled to the following LIBNAME statement and associated

DATA step.

libname oratabs oracle user=USERNAME

 orapw = PASSWORD path = "@INSTANCE" schema = TRIALNAME;

data adverse;

 set oratabs.AE_ORACLE_TABLE;

 where query_clean = “YES”;

 keep subject verbatim ae_date pt_text;

run;

临床研究SAS高级编程 137

SAS/ACCESS LIBNAME statement (3)

In this program the “oratabs” libref allows all of the tables

found in that Oracle data instance to be treated like SAS data

sets. This is a simple and fast way of accessing relational

databases, and it requires no knowledge of SQL to implement.

Although the preceding examples import Oracle data,

SAS/ACCESS can be used to access quite a number of

relational databases, including Oracle, Microsoft SQL Server.

临床研究SAS高级编程 138

Access to SQL

Contents

SAS/ACCESS SQL Pass-Through Facility

SAS/ACCESS LIBNAME statement

临床研究SAS高级编程 139

SAS/ACCESS SQL Pass-Through Facility

The following example sends Microsoft SQL Server 6.5

an SQL query for processing. The results from the query

serve as a virtual table for the PROC SQL FROM clause. In

this example, MYDB is the connection alias.
proc sql;

 connect to SQLSVR as mydb

 (datasrc=“SQL Server” use=testuser password=testpass);

 select * from connection to mydb

 (select CUSTOMER, NAME, COUNTRY

 from CUSTOMERS

 where COUNTRY <> ‘USA’);

quit;

临床研究SAS高级编程 140

SAS/ACCESS LIBNAME statement (1)

The Microsoft SQL Server specific syntax for the

LIBNAME statement is:
LIBNAME libref sqlsvr <connection-options> <LIBNAME - options>

Libref is any SAS name that serves as an alias to associate SAS
with a database, schema, server, or group of tables and views.

Sqlsvr is the SAS/ACCESS engine name for the interface to
Microsoft SQL Server.

connection – options provide connection information and control
how SAS manages the timing and concurrence of the connection to
the DBMS.

LIBNAME – options define how DBMS objects are processed by
SAS. Some LIBNAME options can enhance performance; others
determine locking or naming behavior.

临床研究SAS高级编程 141

SAS/ACCESS LIBNAME statement (2)

Microsoft SQL server LIBNAME statement examples
In following example, USER= and PASSEORD= are connection

options.
Libname mydblib sqlsvr user=testuser password=testpass;

In the following example, the libref MYDBLIB connects to a
Microsoft SQL Server database using the NOPROMPT= option.
libname mydblib sqlsvr

 noprompt=“uid=testuser;

 pwd=testpass;

 dsn=sqlservr;”

 stringdates=yes;

proc print data=mydblib.customers;

 where state=‘CA’;

run;

